Chinese Grammatical Error Diagnosis System Based on Hybrid Model
نویسندگان
چکیده
This paper describes our system in the Chinese Grammatical Error Diagnosis (CGED) task for learning Chinese as a Foreign Language (CFL). Our work adopts a hybrid model by integrating rulebased method and n-gram statistical method to detect Chinese grammatical errors, identify the error type and point out the position of error in the input sentences. Tri-gram is applied to disorder mistake. And the rest of mistakes are solved by the conservation rules sets. Empirical evaluation results demonstrate the utility of our CGED system.
منابع مشابه
Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis
Grammatical Error Diagnosis for Chinese has always been a challenge for both foreign learners and NLP researchers, for the variousity of grammar and the flexibility of expression. In this paper, we present a model based on Bidirectional Long Short-Term Memory(Bi-LSTM) neural networks, which treats the task as a sequence labeling problem, so as to detect Chinese grammatical errors, to identify t...
متن کاملAlibaba at IJCNLP-2017 Task 1: Embedding Grammatical Features into LSTMs for Chinese Grammatical Error Diagnosis Task
This paper introduces Alibaba NLP team system on IJCNLP 2017 shared task No. 1 Chinese Grammatical Error Diagnosis (CGED). The task is to diagnose four types of grammatical errors which are redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We treat the task as a sequence tagging problem and design some handcraft features to solve it. Our system is mainly b...
متن کاملYNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model
Building a system to detect Chinese grammatical errors is a challenge for naturallanguage processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bidirectional long short-term memory (BiLSTM) conditional random field (CRF) model to produce the sequences that indicate an error type for every position of...
متن کاملN-gram Model for Chinese Grammatical Error Diagnosis
Detection and correction of Chinese grammatical errors have been two of major challenges for Chinese automatic grammatical error diagnosis. This paper presents an N-gram model for automatic detection and correction of Chinese grammatical errors in NLPTEA 2017 task. The experiment results show that the proposed method is good at correction of Chinese grammatical errors.
متن کاملChinese Grammatical Error Diagnosis with Long Short-Term Memory Networks
Grammatical error diagnosis is an important task in natural language processing. This paper introduces our Chinese Grammatical Error Diagnosis (CGED) system in the NLP-TEA-3 shared task for CGED. The CGED system can diagnose four types of grammatical errors which are redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We treat the CGED task as a sequence lab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015